Previous Table of Contents Next

The Beam Tree

John’s original Quake design was to draw front-to-back, using a second BSP tree to keep track of what parts of the screen were already drawn and which were still empty and therefore drawable by the remaining polygons. Logically, you can think of this BSP tree as being a 2-D region describing solid and empty areas of the screen, as shown in Figure 64.4, but in fact it is a 3-D tree, of the sort known as a beam tree. A beam tree is a collection of 3-D wedges (beams), bounded by planes, projecting out from some center point, in this case the viewpoint, as shown in Figure 64.5.

In John’s design, the beam tree started out consisting of a single beam describing the frustum; everything outside that beam was marked solid (so nothing would draw there), and the inside of the beam was marked empty. As each new polygon was reached while walking the world BSP tree front-to-back, that polygon was converted to a beam by running planes from its edges through the viewpoint, and any part of the beam that intersected empty beams in the beam tree was considered drawable and added to the beam tree as a solid beam. This continued until either there were no more polygons or the beam tree became entirely solid. Once the beam tree was completed, the visible portions of the polygons that had contributed to the beam tree were drawn.

Figure 64.4
  Partitioning the screen into 2-D regions.

Figure 64.5
  Beams as wedges projecting from the viewpoint to polygon edges.

The advantage to working with a 3-D beam tree, rather than a 2-D region, is that determining which side of a beam plane a polygon vertex is on involves only checking the sign of the dot product of the ray to the vertex and the plane normal, because all beam planes run through the origin (the viewpoint). Also, because a beam plane is completely described by a single normal, generating a beam from a polygon edge requires only a cross-product of the edge and a ray from the edge to the viewpoint. Finally, bounding spheres of BSP nodes can be used to do the aforementioned bulk culling to the frustum.

The early-out feature of the beam tree—stopping when the beam tree becomes solid—seems appealing, because it appears to cap worst-case performance. Unfortunately, there are still scenes where it’s possible to see all the way to the sky or the back wall of the world, so in the worst case, all polygons in the frustum will still have to be tested against the beam tree. Similar problems can arise from tiny cracks due to numeric precision limitations. Beam-tree clipping is fairly time-consuming, and in scenes with long view distances, such as views across the top of a level, the total cost of beam processing slowed Quake’s frame rate to a crawl. So, in the end, the beam-tree approach proved to suffer from much the same malady as the painter’s algorithm: The worst case was much worse than the average case, and it didn’t scale well with increasing level complexity.

3-D Engine du Jour

Once the beam tree was working, John relentlessly worked at speeding up the 3-D engine, always trying to improve the design, rather than tweaking the implementation. At least once a week, and often every day, he would walk into my office and say “Last night I couldn’t get to sleep, so I was thinking...” and I’d know that I was about to get my mind stretched yet again. John tried many ways to improve the beam tree, with some success, but more interesting was the profusion of wildly different approaches that he generated, some of which were merely discussed, others of which were implemented in overnight or weekend-long bursts of coding, in both cases ultimately discarded or further evolved when they turned out not to meet the design criteria well enough. Here are some of those approaches, presented in minimal detail in the hopes that, like Tom Wilson with the Paradise FIFO, your imagination will be sparked.

Subdividing Raycast

Rays are cast in an 8×8 screen-pixel grid; this is a highly efficient operation because the first intersection with a surface can be found by simply clipping the ray into the BSP tree, starting at the viewpoint, until a solid leaf is reached. If adjacent rays don’t hit the same surface, then a ray is cast halfway between, and so on until all adjacent rays either hit the same surface or are on adjacent pixels; then the block around each ray is drawn from the polygon that was hit. This scales very well, being limited by the number of pixels, with no overdraw. The problem is dropouts; it’s quite possible for small polygons to fall between rays and vanish.

Vertex-Free Surfaces

The world is represented by a set of surface planes. The polygons are implicit in the plane intersections, and are extracted from the planes as a final step before drawing. This makes for fast clipping and a very small data set (planes are far more compact than polygons), but it’s time-consuming to extract polygons from planes.

The Draw-Buffer

Like a z-buffer, but with 1 bit per pixel, indicating whether the pixel has been drawn yet. This eliminates overdraw, but at the cost of an inner-loop buffer test, extra writes and cache misses, and, worst of all, considerable complexity. Variations include testing the draw-buffer a byte at a time and completely skipping fully-occluded bytes, or branching off each draw-buffer byte to one of 256 unrolled inner loops for drawing 0–8 pixels, in the process possibly taking advantage of the ability of the x86 to do the perspective floating-point divide in parallel while 8 pixels are processed.

Span-Based Drawing

Polygons are rasterized into spans, which are added to a global span list and clipped against that list so that only the nearest span at each pixel remains. Little sorting is needed with front-to-back walking, because if there’s any overlap, the span already in the list is nearer. This eliminates overdraw, but at the cost of a lot of span arithmetic; also, every polygon still has to be turned into spans.


The holes where polygons are missing on surfaces are tracked, because it’s only through such portals that line-of-sight can extend. Drawing goes front-to-back, and when a portal is encountered, polygons and portals behind it are clipped to its limits, until no polygons or portals remain visible. Applied recursively, this allows drawing only the visible portions of visible polygons, but at the cost of a considerable amount of portal clipping.


In the end, John decided that the beam tree was a sort of second-order structure, reflecting information already implicitly contained in the world BSP tree, so he tackled the problem of extracting visibility information directly from the world BSP tree. He spent a week on this, as a byproduct devising a perfect DOOM (2-D) visibility architecture, whereby a single, linear walk of a DOOM BSP tree produces zero-overdraw 2-D visibility. Doing the same in 3-D turned out to be a much more complex problem, though, and by the end of the week John was frustrated by the increasing complexity and persistent glitches in the visibility code. Although the direct-BSP approach was getting closer to working, it was taking more and more tweaking, and a simple, clean design didn’t seem to be falling out. When I left work one Friday, John was preparing to try to get the direct-BSP approach working properly over the weekend.

Previous Table of Contents Next

Graphics Programming Black Book © 2001 Michael Abrash